

NORMANHURST BOYS HIGH SCHOOL

MATHEMATICS ADVANCED (INCORPORATING EXTENSION 1) YEAR 11 COURSE

Topic summary and exercises:

(A) (xi) Indices and Logarithms

Name:

Initial version by H. Lam, September 2014 (Graphs of exponential/logarithmic functions). Last updated August 23, 2022. Various corrections by students & members of the Department of Mathematics at North Sydney Boys and Normanhurst Boys High Schools.

Acknowledgements Pictograms in this document are a derivative of the work originally by Freepik at http://www.flaticon.com, used under 🕝 CC BY 2.0.

Symbols used

(!) Beware! Heed warning.

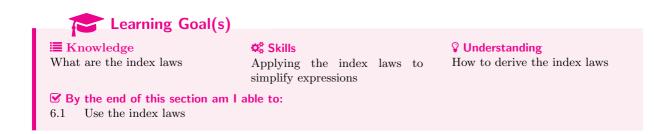
- (A) Mathematics Advanced content.
- (x1) Mathematics Extension 1 content.
- (L) Literacy: note new word/phrase.
- $\mathbb N \;$ the set of natural numbers
- $\mathbbm{Z}~$ the set of integers
- ${\mathbb Q}$ $% {\mathbb Q}$ the set of rational numbers
- ${\mathbb R}\,$ the set of real numbers
- $\forall \ \, \text{for all} \quad$

Syllabus outcomes addressed

MA11-6 manipulates and solves expressions using the logarithmic and index laws, and uses logarithms and exponential functions to solve practical problems

Syllabus subtopics

MA-E1 (1.1, 1.2, 1.4) Logarithms and Exponentials

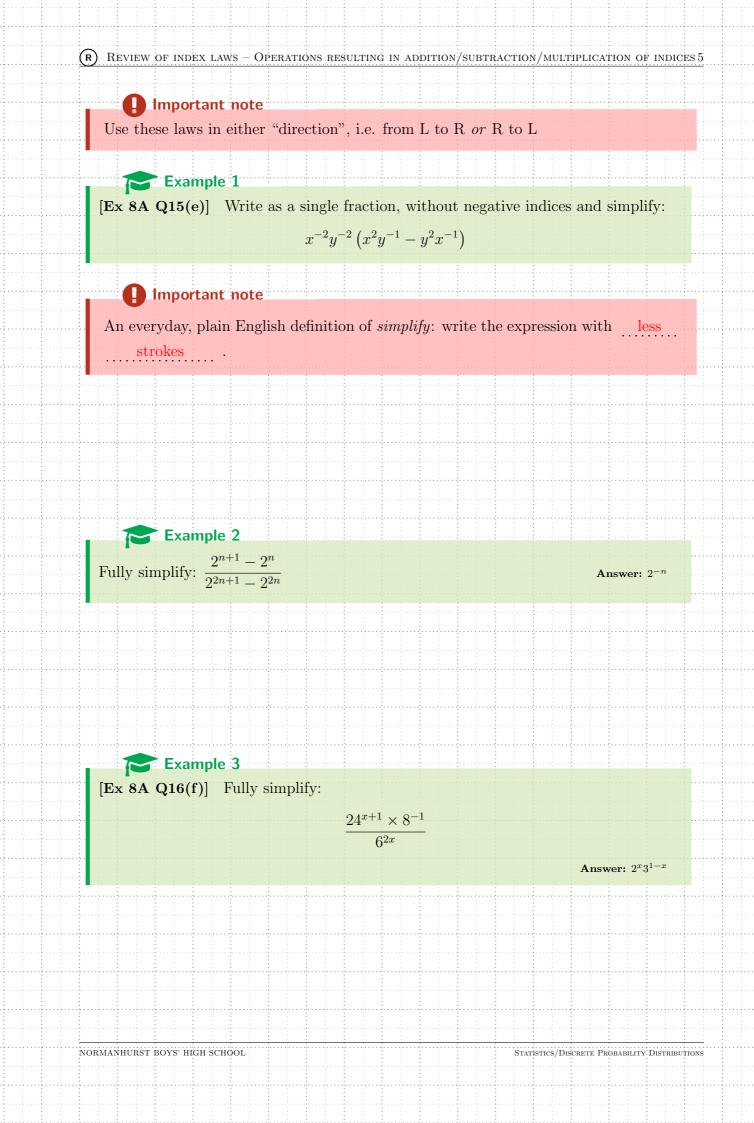

Gentle reminder

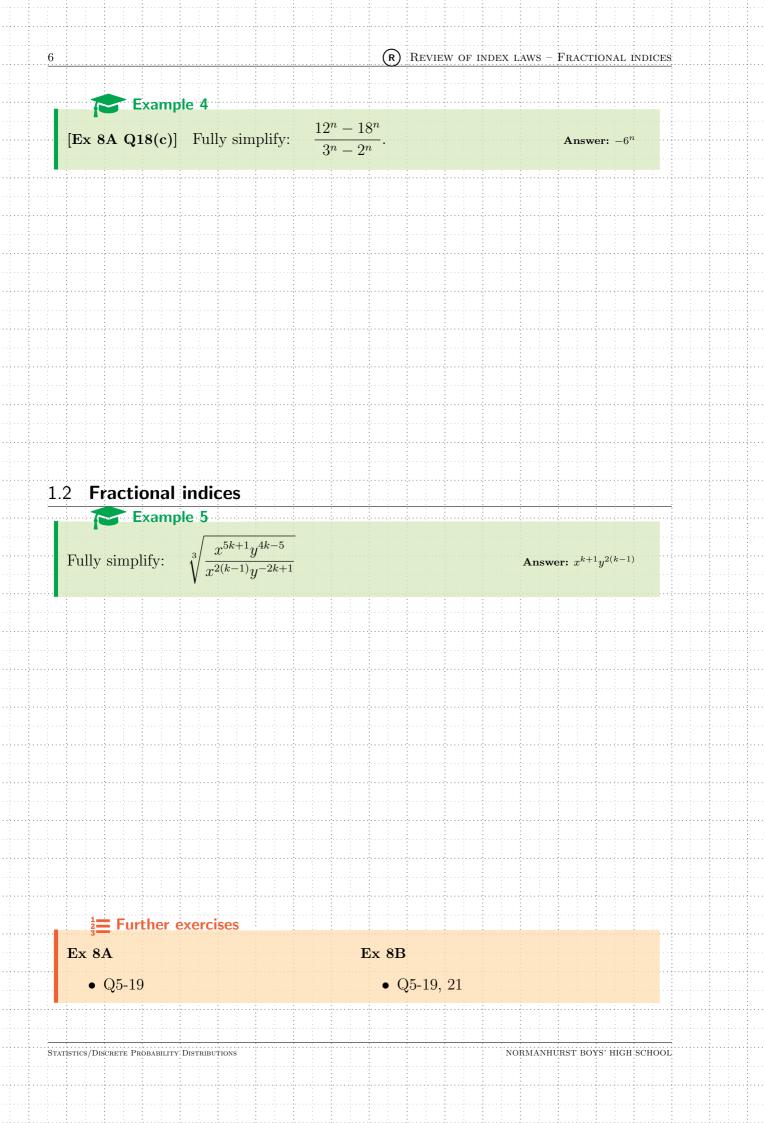
- For a thorough understanding of the topic, *every* question in this handout is to be completed!
- Additional questions from *CambridgeMATHS Mathematics Extension 1* (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019b) or *CambridgeMATHS Mathematics Advanced* (Pender, Sadler, Ward, Dorofaeff, & Shea, 2019a) will be completed at the discretion of your teacher.
- Remember to copy the question into your exercise book!

Contents

1	(\mathbf{R}) Review of index laws	4
	1.1 Operations resulting in addition/subtraction/multiplication of indices	4
	1.2 Fractional indices	6
2	(R) Logarithms	7
	2.1 Basic rules	7
	2.2 Laws of logarithms	7
	2.3 Exponential analog & mutual inverse	9
3	Equations involving indices and logarithms	10
	3.1 Change of base	10
	3.1.1 Examples	11
	3.2 Harder equations	12
	3.2.1 Exponential	12
	3.2.2 Logarithmic	13
4	Exponential and logarithmic graphs	16
	4.1 Exponential	16
	4.1.1 Transformations	17
	4.1.2 (\mathbf{x}_1) Harder graphs	18
	4.2 Logarithmic	20
	4.2.1 Transformations	21
	4.2.2 (x1) Harder graphs \ldots	22
5	Applications	24
	5.1 Additional questions	30
Re	eferences	31

$\widehat{\mathbf{R}} \quad \mathbf{Review of index \ laws}$

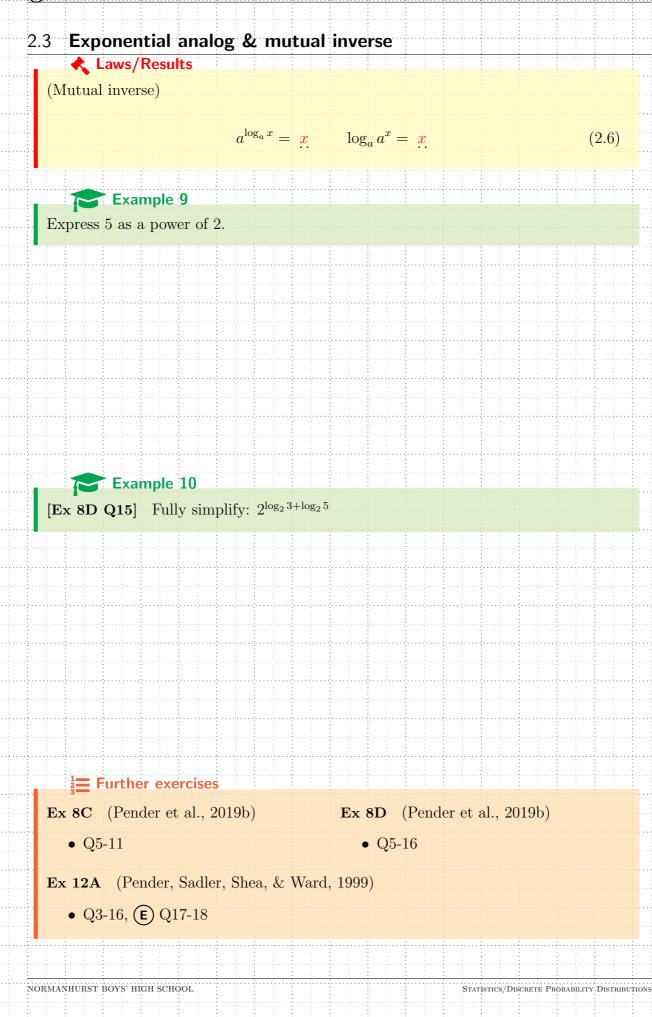

1.1 Operations resulting in addition/subtraction/multiplication of indices

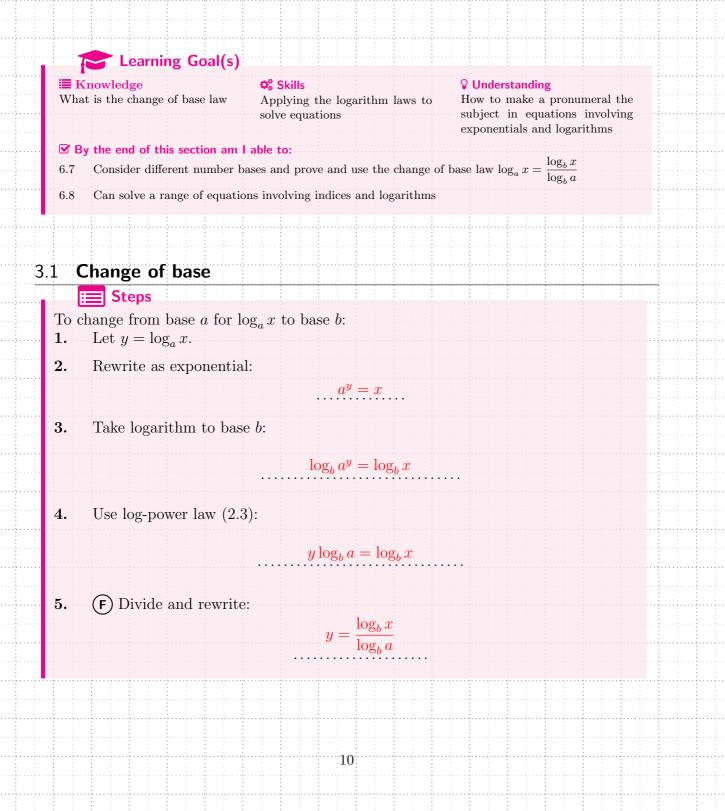

Only the most challenging questions are provided here. The rest are omitted for brevity and should be assumed knowledge.

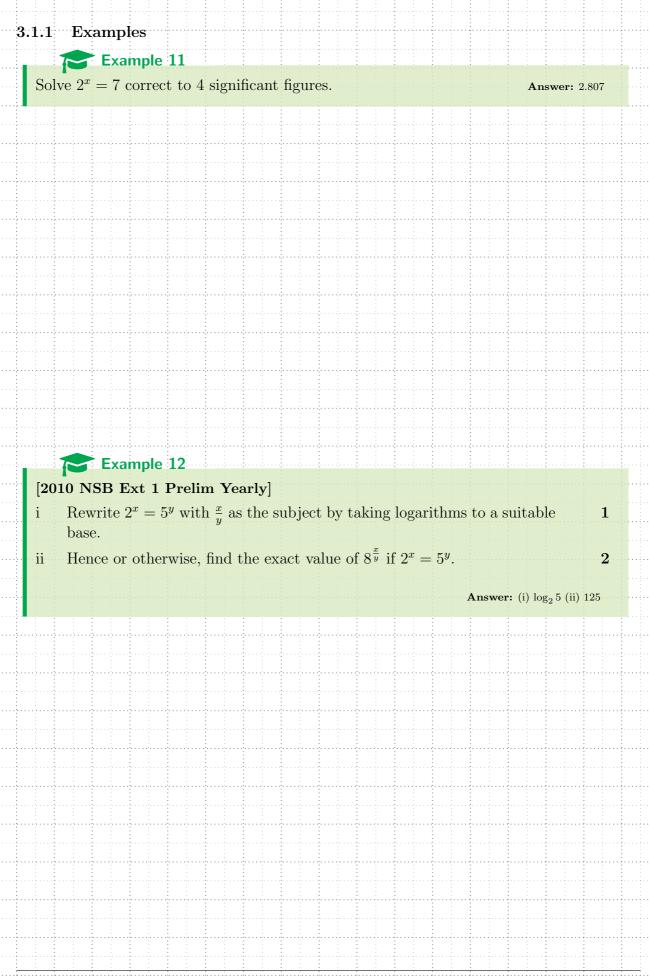
Laws/Results		
For $a > 1$:		
(Product)	$a^x \times a^y = \dots a^{x+y}$	(1.1)
(Quotient)	$a^x \div a^y = \dots a^{x-y}$	(1.2)
(Power)	$(a^x)^y = \dots \underbrace{a^{x-y}}_{\dots \dots $	(1.3)
$(Power \ 0)$	$a^0 = \frac{1}{}$	(1.4)
(Negative index)	$a^{-x} = \frac{1}{a^x}$	(1.5)
(Fractional index)	$a^{rac{1}{x}}=\sqrt[x]{a}$	(1.6)
Laws/Results		

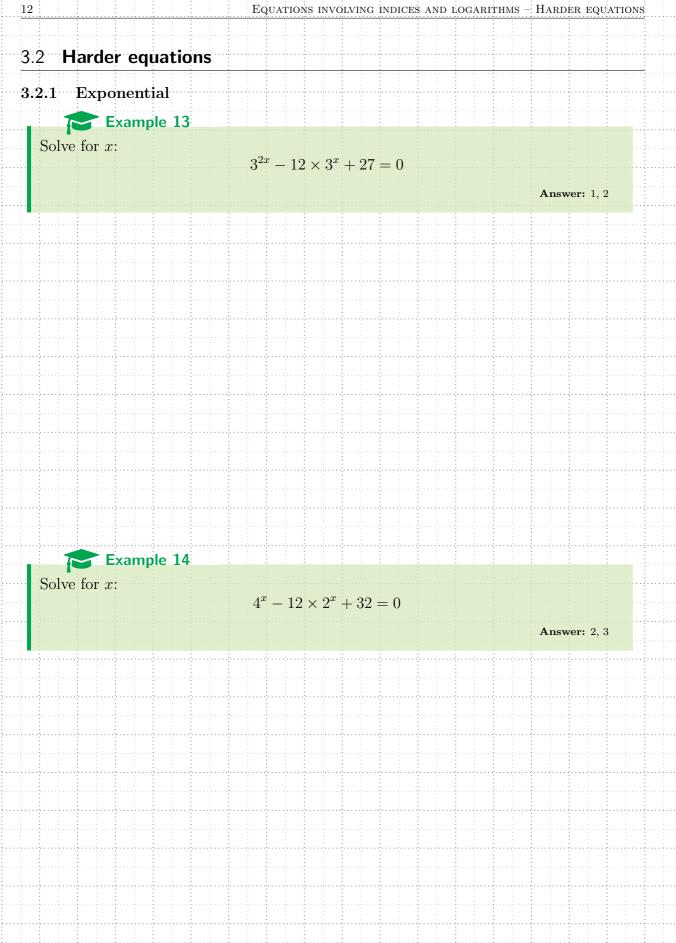
(A slightly more neglected rule)

$$(ab)^x = \underbrace{a^x b^x}_{-4} \dots \dots \tag{1.7}$$

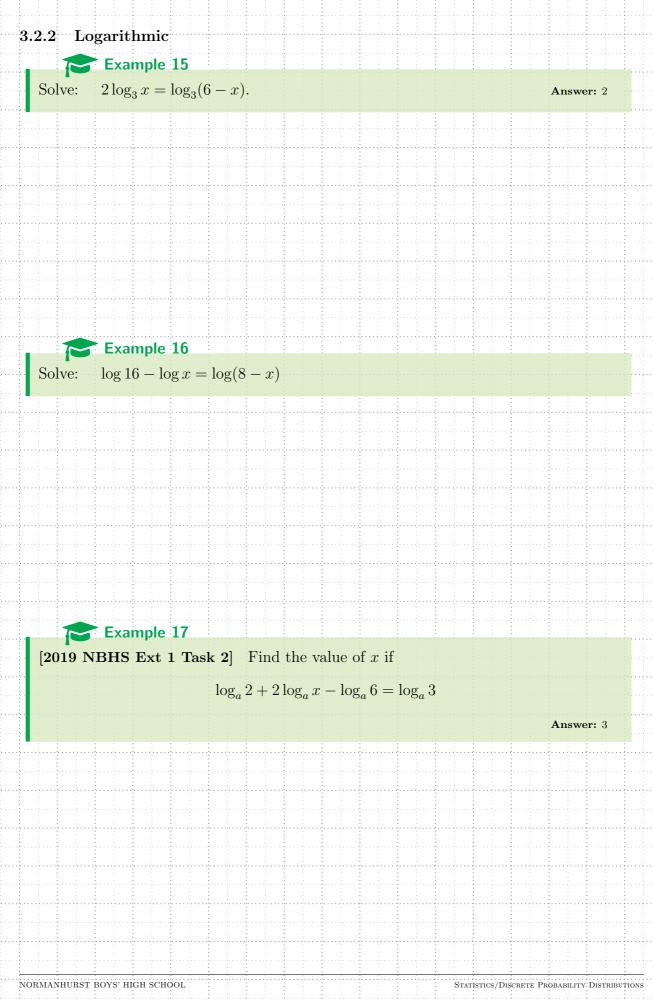



R Logarithms


(Quotient) $\log x - \log y = \log \left(\right)$ (Power) $\log (x^a) = \frac{a \log x}{\dots}$	
	$_{ m rithmi}$
makes sense when $a > 0$ and $a \neq 1$ 6.3 Understand how to use a calculator to find logarithms base 10. 6.4 Recognise and use the inverse relationship between logarithms and exponentials. 6.5 Derive the logarithmic laws from the index laws and use the algebraic properties of logarith simplify and evaluate logarithmic expressions. exponentials. 7.1 Basic rules Definition 1 If $a^x = y$, then $x = \log_a y$. 7.2 Laws of logarithms (Product) $\log x + \log y = \log()$ (Quotient) $\log x - \log y = \log()$ (Power) $\log (x^a) = \frac{a \log x}{a \log x}$	
6.4 Recognise and use the inverse relationship between logarithms and exponentials. 6.5 Derive the logarithmic laws from the index laws and use the algebraic properties of logarith simplify and evaluate logarithmic expressions. exponentials. 1 Basic rules 2 Definition 1 If $a^x = y$, then $x = \log_a y$. 2 Laws of logarithms 4 Laws/Results (Product) $\log x + \log y = \log()$ (Quotient) $\log x - \log y = \log()$ (Power) $\log (x^a) = \frac{a \log x}{\dots}$	on onl
6.5 Derive the logarithmic laws from the index laws and use the algebraic properties of logarith simplify and evaluate logarithmic expressions. exponentials. 1 Basic rules 2 Definition 1 If $a^x = y$, then $x = \log_a y$. 2 Laws of logarithms 4 Laws/Results (Product) $\log x + \log y = \log()$ (Quotient) $\log x - \log y = \log()$ (Power) $\log (x^a) = a \log x$	
simplify and evaluate logarithmic expressions. exponentials. 1 Basic rules 2 Definition 1 If $a^x = y$, then $x = \log_a y$. 2 Laws of logarithms 4 Laws/Results (Product) $\log x + \log y = \log()$ (Quotient) $\log x - \log y = \log()$ (Power) $\log (x^a) = -a \log x$	
$ \begin{array}{c c} \hline \textbf{Definition 1} \\ \text{If } a^{x} = y, \text{ then } x = \log_{a} y. \\ \hline \textbf{.2 Laws of logarithms} \\ \hline \textbf{.2 Laws of logarithms} \\ \hline \textbf{.2 Laws / Results} \\ \hline \textbf{(Product)} & \log x + \log y = \log () \\ \hline \textbf{(Quotient)} & \log x + \log y = \log () \\ \hline \textbf{(Quotient)} & \log x - \log y = \log () \\ \hline \textbf{(Power)} & \log (x^{a}) = \underbrace{a \log x}_{\dots} \\ \hline \textbf{(Power)} \\ \end{array} $	hms t
$ \begin{array}{c c} \hline \textbf{Definition 1} \\ \text{If } a^{x} = y, \text{ then } x = \log_{a} y. \\ \hline \end{array} \\ \hline \begin{array}{c} 2 & \textbf{Laws of logarithms} \\ \hline \hline \hline \\ & \textbf{Laws/Results} \\ \hline \end{array} \\ \hline \begin{array}{c} (\text{Product}) & \log x + \log y = \log (\) \\ (\text{Quotient}) & \log x - \log y = \log (\) \\ (\text{Power}) & \log (x^{a}) = \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \begin{array}{c} a \log x \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} $	
If $a^{x} = y$, then $x = \log_{a} y$. 2 Laws of logarithms (Product) $\log x + \log y = \log()$ (Quotient) $\log x - \log y = \log()$ (Power) $\log (x^{a}) = \frac{a \log x}{\dots}$	
2 Laws of logarithms $\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
Caws/Results (Product) $\log x + \log y = \log ($)(Quotient) $\log x - \log y = \log ($)(Power) $\log (x^a) = \frac{a \log x}{\dots}$	
Contract Cont	
Laws/Results(Product) $\log x + \log y = \log ($)(Quotient) $\log x - \log y = \log ($)(Power) $\log (x^a) = \frac{a \log x}{\dots}$	
(Product) $\log x + \log y = \log ($) (Quotient) $\log x - \log y = \log ($) (Power) $\log (x^a) = \frac{a \log x}{\dots \dots $	
(Quotient) $\log x - \log y = \log \left(\right)$ (Power) $\log (x^a) = \frac{a \log x}{\dots \dots $	
(Power) $\log(x^a) = \frac{a \log x}{\dots \dots \dots}$	(2.1)
(Power) $\log(x^a) = \frac{a \log x}{\dots}$	(\mathbf{a},\mathbf{a})
	(2.2)
	(2.3)
(Power 1) $\log_a a = \frac{1}{2}$	
	(2.4)
(Power 0) $\log_a 1 = 0$	(2.5)


						(R) Log	ARITHMS –	Laws o	F LOGA	RITHMS	Š
						X						
	Important ese laws in e		lirectio	on"ief	rom L	to R a	r R to	ΣŢ				
				311 , 1.c. 1								
	Example											
	$\log_a 2 = m$ as	nd \log_a :				ing in			l <i>n</i> :			
	$\log_a 4$ $\log_a 27$			$\log_a 1.5$ $\log_a 12$			(e) (f)	$\log_a 18$ $\log_a 13.$	5			
			(u)	10g _a 12			(1)	10g _a 10.				
	Example	7										
	Example U HSC Q7		n log _a	b = 2.75	and log	a c = 0).25, fi	nd the va	lue of			
log	$a\left(\frac{b}{a}\right)$										1	
	(c)										2	
0												
	Example	8										
- 1 - 1	ach of the fo		as log	5 ₂ 3:								
(a) lo	$\log_2 81$		(b)	$\log_2 2$	3		(c)	$\log_2 \frac{8}{9}$				
											• •	1
TICS/DISCPF	te Probability Dist	RIBUTIONS						NORMANI	IURST BO	ұs' нісн	LISCHOOT	

Equations involving indices and logarithms



STATISTICS/DISCRETE PROBABILITY DISTRIBUTIONS

NORMANHURST BOYS' HIGH SCHOOL

Example 18

Solve the following pair of simultaneous equations:

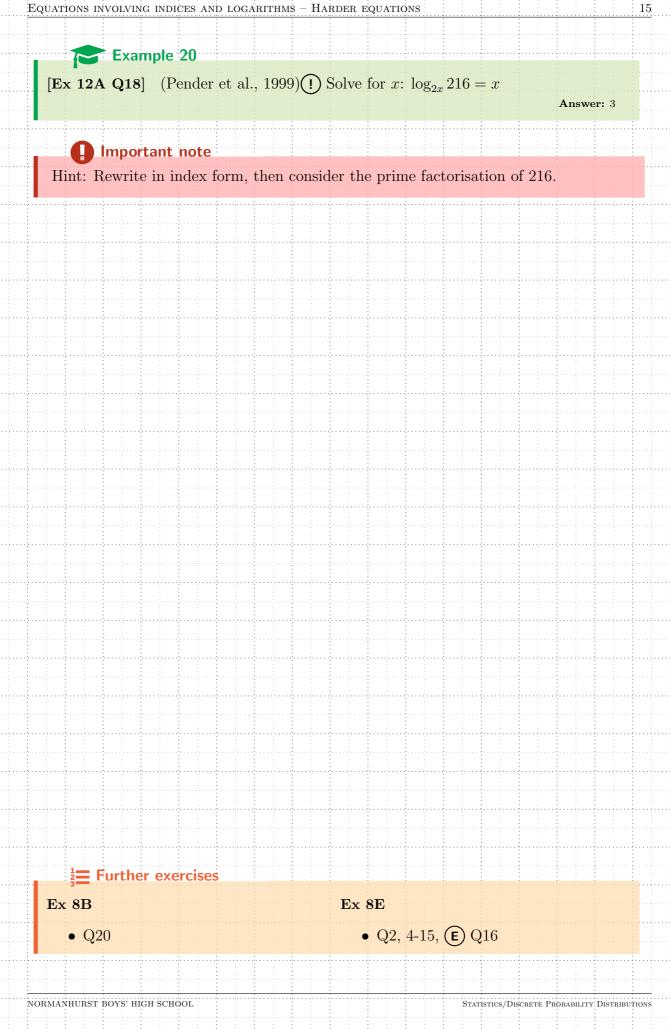
$$\begin{cases} 5^{x+y} = \frac{1}{5} \\ 5^{3x+2y} = 1 \end{cases}$$

Answer: x = 2, y = -3

Example 19

(Pender et al., 1999, Ex 12A)(a) Use the change of base rule to show that

$$\log_{a^x} b = \frac{\log_a b}{x}$$


(b) Hence evaluate $\log_{\sqrt{27}} 81$ without a calculator.

(c) Solve for x:

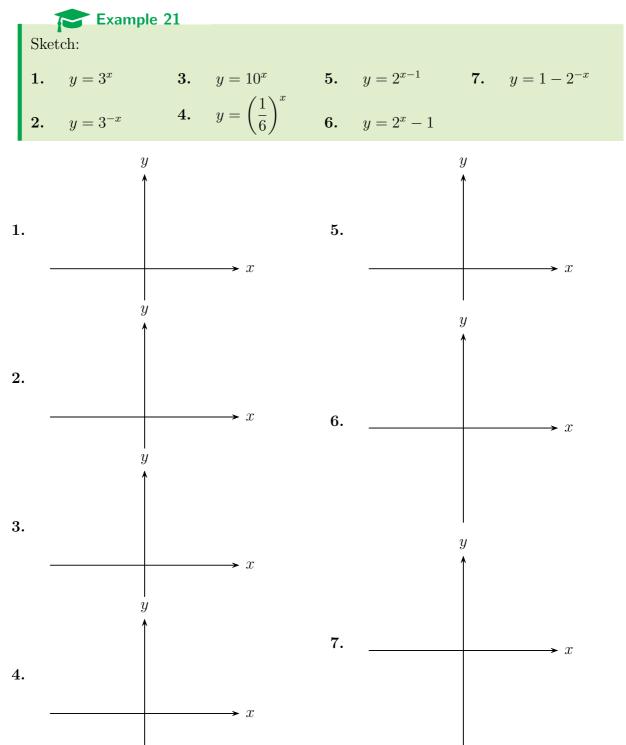
$$\log_{\sqrt{a}}(x+2) - \log_{\sqrt{a}} 2 = \log_a x + \log_a 2$$

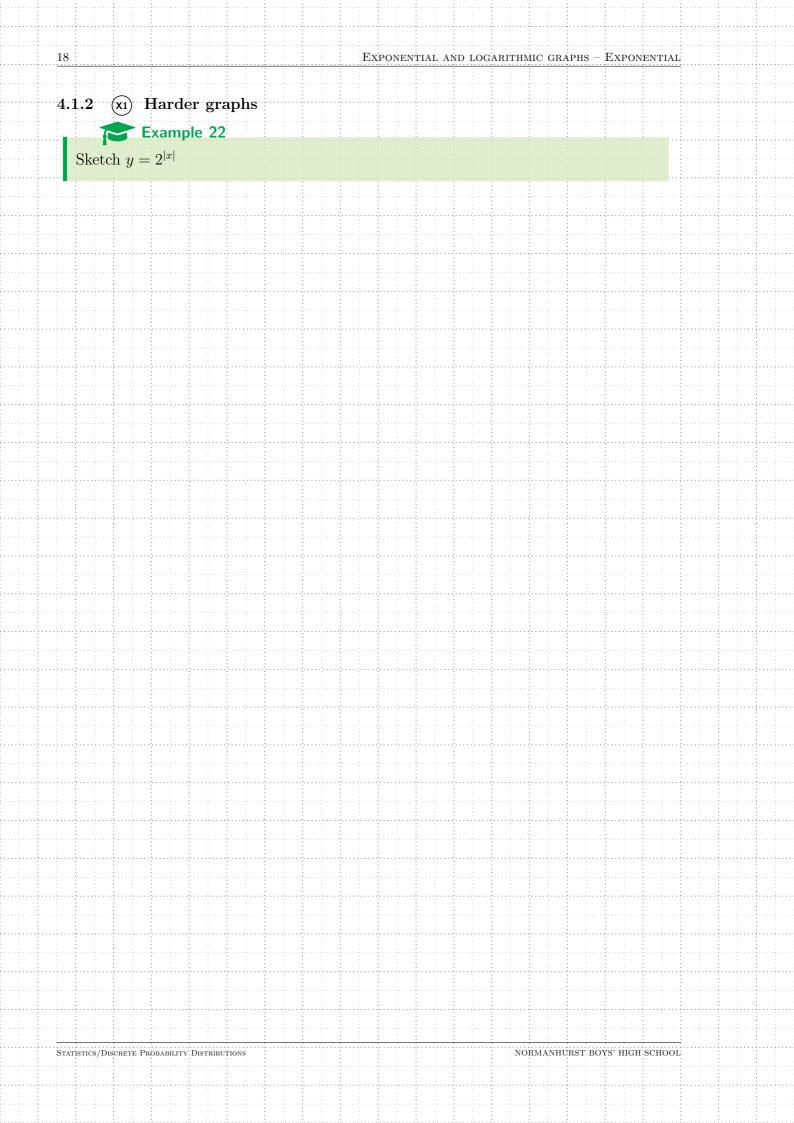
Answer: (b) $\frac{8}{3}$ (c) x = 2

STATISTICS/DISCRETE PROBABILITY DISTRIBUTIONS

Exponential and logarithmic graphs

4.1 Exponential


The Learning Goal(s)


-

Ş

	Vunderstanding the graphs of The techniques used to als and logarithms determine the important features on exponential and logarithmic graphs													
Solution By the end of this section am I able to: 6.10 Recognise and sketch the graphs of $y = ka^x$, $y = ka^{-x}$ where k is a constant, and $x = \log_a y$ 6.11 Solve a range of problems related to exponential and logarithmic functions Theorem 1														
 Theorem 1 Basic exponential curves: 														
• Equation: $y = a^x$	• When $x = 1, \dots, y = a$													
• Condition on a : $a > 0$	• As													
• Domain: <u>all real x</u>	$-\lim_{x\to\infty} a^x = \infty$													
• Range: $y > 0$	$-\lim_{x o -\infty} \frac{a^x}{\cdots} = \frac{0}{\cdots}.$													
• When $x = 0, \dots, y = 1$	• Inverse: $y = \log_a x$													
ketch:														
• Always show two points on the curv	re!													

4.1.1 Transformations

							•		·									• • • •
-																		
ġ	 				• • • • •	 			 	• • • • •	• • • • •	 • • • • •	• • • • •	 		 	 • • • • •	• • •
ł																		
j	 					 			 			 		 		 	 	
÷	 	• • • • •		• • • • •	• • • • •	 	• • • • • •	•••••	 • • • • •	•••••		 •••••	•••••	 •••••	• • • • •	 •••••	 • • • • •	• • •
ł																		
j	 					 			 			 		 		 	 	
-																		
- 2	 					 		• • • • •	 • • • • •			 		 		 	 	• • •
ł																		
ŝ	 					 			 			 		 		 	 	
-																		
1						 			 			 		 				
			• • • • •															
ŝ	 			• • • • •		 			 : :;			 		 		 	 	
į																		
1									 			 		 			 	
÷												• • • • •						
÷	 		• • • • •			 			 • • • • •			 		 		 	 	
÷																		
-																		
ł																		
1																		
ģ	 					 			 			 		 		 	 	• • •
ġ	 					 			 			 		 		 	 	• • •
-																		
-																	 	

NORMANHURST BOYS' HIGH SCHOOL

STATISTICS/DISCRETE PROBABILITY DISTRIBUTIONS

			AND						

4.2 Logarithmic Theorem 2

20

Basic logarithmic curves:

- Equation: $y = \log_a x$ • When x = a, y = 1
- Condition on a: a > 0
- Domain: x > 0

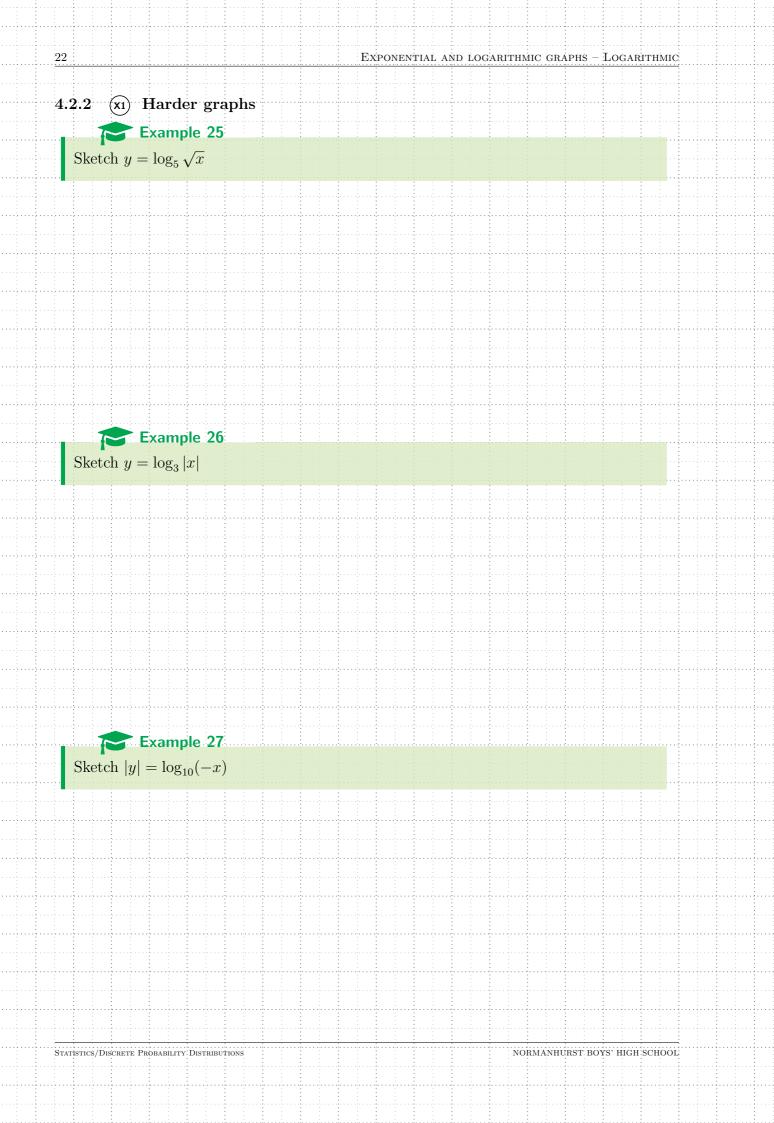
STATISTICS/DISCRETE PROBABILITY DISTRIBUTIONS

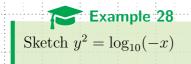
- Range: all real y
- When x = 1, y = 0...

- As
 - $-x \to \infty, y \to \underline{\infty}$

$$-x \rightarrow 0^+, y \rightarrow \dots 000$$

• Inverse: $y = a^x$


Sketch:


- Always show two points on the curve!

NORMANHURST BOYS' HIGH SCHOOL

4.2.1 Transformations Example 24 1. $f(x) = \log_{10}(2x)$. 2. $f(x) = \log_5 x^2, x > 0$. 3. $f(x) = \log_6(3x - 6)$. 4. $f(x) = \log_7(2x+3)$. 5. $f(x) = \log_{10} |x|$. 6. $f(x) = \log_7(-x)$. yy1. **4**. **→** x **→** x yy2. 5. $\rightarrow x$ **→** x yy3. 6. **→** x **→** x

i≣ Further exercises Ex 8F ● Q9-11

NORMANHURST BOYS' HIGH SCHOOL

Applications

Learning Goal(s)

Knowledge

Solving real-life problems using exponentials and logarithms

SkillsConstructingequationsinvolvingexponentialsandlogarithmstosolvefromreallifecontexts

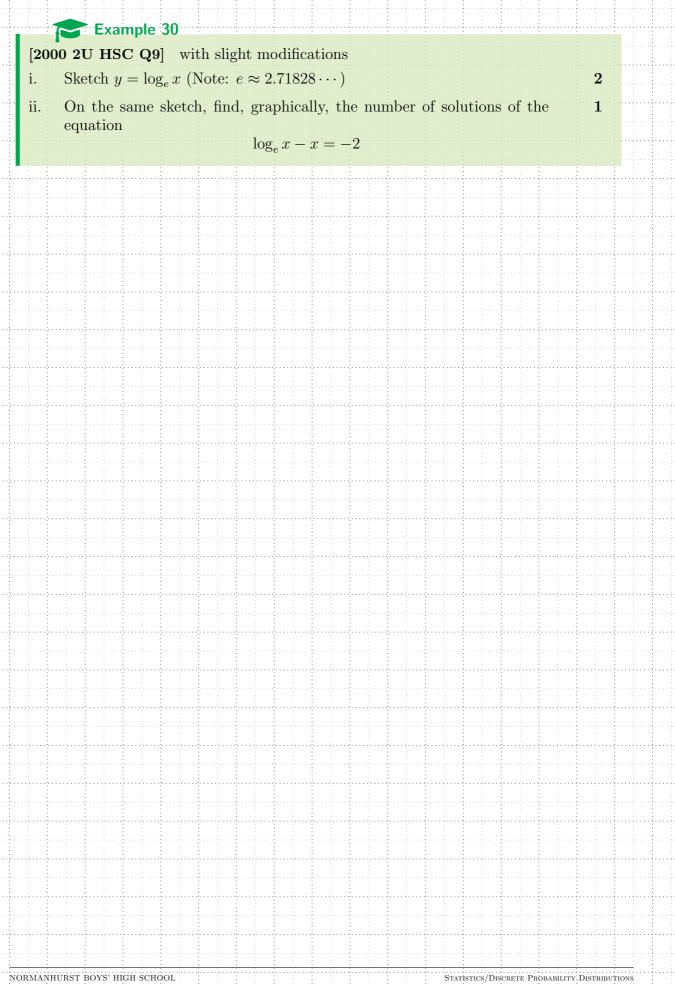
Vunderstanding

The real life applications of exponentials and logarithms

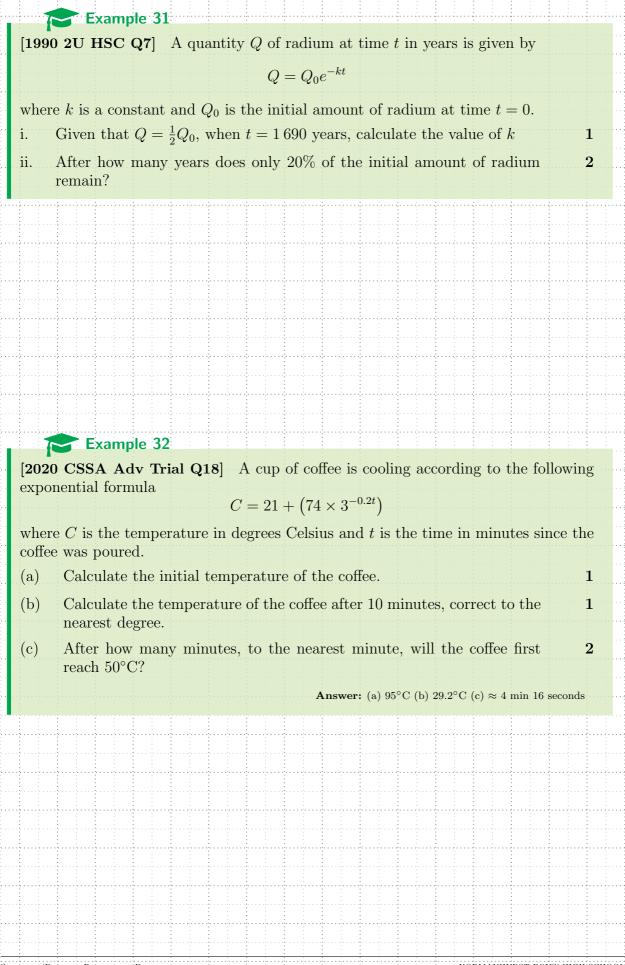
☑ By the end of this section am I able to:

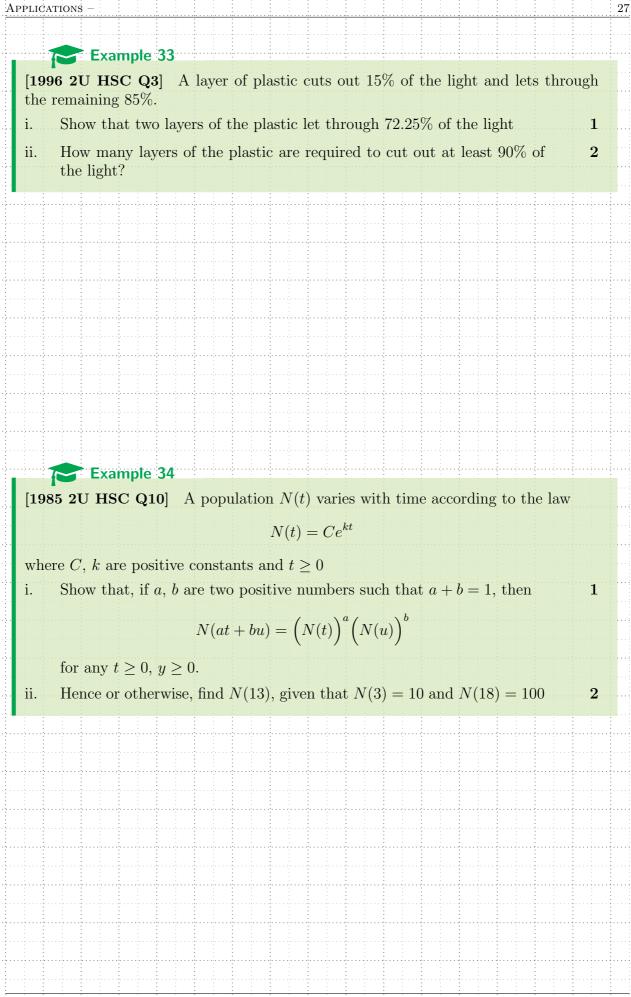
6.6 Interpret and use logarithmic scales, for example decibels in acoustics, different seismic scales for earthquake magnitude, octaves in music or pH in chemistry

6.9 Solve algebraic, graphical and numerical problems involving logarithms in a variety of practical and abstract contexts, including applications from financial, scientific, medical and industrial contexts


Important note

Most questions in this section make use of the exponent e instead of 2, 3 or 10. Simply treat e as another one of these numerals for the time being - there will be a more in depth study of e later on with calculus.


Example 29


[2019 CSSA 2U Trial Q16] (2 marks) Find the domain of the function

 $g(x) = \ln\left(x^2 - x\right)$

STATISTICS/ DISCRETE I RUDADILITY DISTRIBUTION

28										· · · · · · · · · · · · · · · · · · ·						* *	/	Appli	CATIO	NS –		· · · · · · · · · · · · · · · · · · ·	
															•						•		
					le 35				• • •									•		·			
	[2011 2U HSC Q10] The intensity I, measured in watt/m ² , of a sound is given by $I = 10^{-12} \times c^{0.1L}$																						
	$I = 10^{-12} \times e^{0.1L}$																						
	where L is the loudness of the sound in decibels.																						
	i If the loudness of a sound at a concert is 110 decibels, find the intensity of the sound. Give your answer in scientific notation.															7	1						
	ii													on. Ind is	or	ator	ther		2				
	11				att/n		11 (11100	115109	U.	La	504	ing is	, 810		UIICI	L	4				
		Wh	at is	thei	navir	num	louo	lne	oss of	9 50111	nd «	so th	at n	o ear (dami	നെ വ	cursí	,					
	iii													reased					2				
			dout														J				· · · · · · · · · · · · · · · · · · ·		
	•																						
															•								
			· · · · · · · · · · · · · · · · · · ·																			· · · · · · · · · · · · · · · · · · ·	
) • • • • · • • • •	· · · · · · · · · · · · · · · · · · ·														(*************************************								
															· · · · · · · · · · · · · · · · · · ·	•	••••				· · · · · · · · · · · · · · · · · · ·		•••
) - 								•••••		•••••					· · · · · · · · · · · · · · · · · · ·	•••••	•••			• • • • • •	· · · · · · · · · · · · · · · · · · ·		
															· · · · · · · · · · · · · · · · · · ·						• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
) - - 								· · · · · ·												• • • • • • • • • • • • • • • • • • •	((
								· · · · · ·							· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·		•••
· · · · ·			· · · · · · · · · · · · · · · · · · ·																	·	· · · · · · · · · · · · · · · · · · ·	• • • • •	
			· · · · · · · · · · · · · · · · · · ·												•					• • • • • • •	•		
					· · · · · · · · · · · · · · · · · · ·															•			
															•						· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·																						
						• • • • • • • • •																	
																						· · · · · · · · · · · · · · · · · · ·	
	• •		· · · · · · · · · · · · · · · · · · ·																		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
• • • • • • •																					· · · · · · · · · · · · · · · · · · ·		
· • • • •																		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
· · · · ·										· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·											· · · · · · · · · · · · · · · · · · ·									
Stat	ISTICS,	/DISCRET	fe Proba	BILITY	Distribut	TIONS								•	Ν	ORMAN	HURST I	BOYS' F	IIGH SC	HOOI			

1

Example 36

[1990 2U HSC Q8] It is assumed that the number N(t) of termites in a certain mound at time $t \ge 0$ is given by

$$N(t) = \frac{A}{2 + e^{-t}}$$

where $e \approx 2.7818 \cdots$, A is a constant and t is measured in months.

- i. At time t = 0, N(t) is estimated at 3×10^5 termites. What is the value **1** of A?
- ii. What is the value of N(t) after one month?
- iii. How many termites would you expect to find in the mound when t is very large?
- iv. ((x) added and modified) By considering the graph of $y = 2 + e^{-t}$, sketch the graph of N(t).

and Further exercises

Ex 8G

• All questions

NORMANHURST BOYS' HIGH SCHOOL

5.1 Additional questions

1. [1992 2U HSC Q4] Ten kilograms of sugar is placed in a container of water and begins to dissolve. After t hours the amount A kg of undissolved sugar is given by

$$A = 10e^{-kt}$$

(where $e \approx 2.7818\cdots$)

- i. Calculate k, given that A = 3.2 when t = 4.
- ii. After how many hours does 1 kg of sugar remain undissolved?

2. [2010 2U HSC Q4] (2 marks) Let $f(x) = 1 + e^x$

Show that $f(x) \times f(-x) = f(x) + f(-x)$.

Answers

1. i. $k=\frac{1}{4}\ln\frac{10}{3.2}\approx 0.28$ ii. $t\approx 8.08~{\rm hrs}$

1

References

- Pender, W., Sadler, D., Shea, J., & Ward, D. (1999). Cambridge Mathematics 3 Unit Year 11 (1st ed.). Cambridge University Press.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019a). CambridgeMATHS Stage 6 Mathematics Advanced Year 11 (1st ed.). Cambridge Education.
- Pender, W., Sadler, D., Ward, D., Dorofaeff, B., & Shea, J. (2019b). CambridgeMATHS Stage 6 Mathematics Extension 1 Year 11 (1st ed.). Cambridge Education.